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BACKGROUND: Although growing evidence suggests that early-life excess manganese (Mn) impairs neurodevelopment, data on the neurodevelopmen-
tal effects of mancozeb, a fungicide containing Mn, and its main metabolite ethylenethiourea (ETU) are limited. 
OBJECTIVE: We examined whether prenatal mancozeb exposure and excess Mn were associated with neurodevelopment in 355 1-y-old infants living 
near banana plantations with frequent aerial mancozeb spraying in Costa Rica. 
METHODS: We measured urinary ETU, hair Mn, and blood Mn concentrations in samples collected 1–3 times during pregnancy from mothers enrolled in 
the Infants’ Environmental Health (ISA) study. We then assessed neurodevelopment in their 1-y-old infants using the Bayley Scales of Infant and Toddler 
Development, 3rd edition (BSID-III). We estimated exposure–outcome associations using linear regression models adjusted for maternal education, parity, 
gestational age at birth, child age, Home Observation for Measurement of the Environment score, and location of neurodevelopmental assessment. 
RESULTS: Median (P25–P75) urinary ETU, hair Mn, and blood Mn measured during pregnancy were 3:3 lg=L (2.4–4.9; specific gravity–corrected), 
1:7 lg=g (0.9–4.1), and 24:0 lg=L (20.3–28.0), respectively. Among girls, higher ETU was associated with lower social-emotional scores 
[b per 10-fold increase = − 7:4 points (95% CI: −15:2, 0.4)], whereas higher hair Mn was associated with lower cognitive scores [−3:0 (−6:1, 0.1)]. 
Among boys, higher hair Mn was associated with lower social-emotional scores [−4:6 (−8:5, −0:8)]. We observed null associations for blood Mn, 
language, and motor outcomes. 
CONCLUSIONS: Our findings indicate that maternal exposure to mancozeb and excess Mn during pregnancy may have adverse and sex-specific effects 
on infant neurodevelopment. https://doi.org/10.1289/EHP1955 

Introduction 
Manganese (Mn) ethylene bis-dithiocarbamate (EBDC) fungicides, 
such as mancozeb and maneb, are widely used in agriculture and 
professional turf management (U.S. EPA 2005). EBDCs contain 
approximately 21% Mn by weight (FAO 1980), and recent studies 
suggest that their use may constitute a source for elevated ethylene-
thiourea (ETU) (van Wendel de Joode et al. 2014), EBDCs’ main 
metabolite, and Mn (Gunier et al. 2013; Mora et al. 2014; van 
Wendel de Joode et al. 2016a) in agricultural communities. 
Naturally occurring Mn in groundwater may also be a source of 
excess Mn for these communities, whose water supply is mainly 
from artesian wells (van Wendel de Joode et al. 2016a). 

Animal studies have shown that early-life exposure to Mn- 
containing fungicides and/or to ETU impairs neurodevelopment 
(Jacobsen et al. 2012; Miranda-Contreras et al. 2005). However, 

the few epidemiological studies that have examined this associa-
tion in children have found inconsistent results (Gunier et al. 2015; 
Mora et al. 2015; van Wendel de Joode et al. 2016b). A cross- 
sectional study of children 6–9 y old living near banana and plan-
tain plantations in Talamanca County, Costa Rica, observed that 
higher urinary ETU concentrations were associated with poorer 
verbal learning outcomes (van Wendel de Joode et al. 2016b). In 
addition, a study from the Center for the Health Assessment of 
Mothers and Children of Salinas (CHAMACOS) that measured 
Mn in deciduous teeth from children living near agricultural fields 
in the Salinas Valley, California, reported an association between 
higher postnatal dentin Mn levels and decreased mental develop-
ment scores on the Bayley Scales of Infant Development, 2nd 
Edition (BSID-II) at 6 and 12 mo of age, but not at 24 mo of age 
(Gunier et al. 2015). Another study within CHAMACOS found 
associations of higher prenatal and postnatal dentin Mn levels with 
poorer behavioral outcomes in school-age boys and girls (7–10.5 y 
old), but better cognitive, memory, and/or motor function abilities 
in boys (Mora et al. 2015). 

Multiple prospective and cross-sectional studies have assessed 
the neurodevelopmental effects of excess Mn from sources other 
than Mn-containing fungicides. Most of these studies have consis-
tently linked exposure to airborne or waterborne Mn with impaired 
cognitive abilities (Bouchard et al. 2011; Carvalho et al. 2014; do 
Nascimento et al. 2016; Haynes et al. 2015; Kim et al. 2009; 
Menezes-Filho et al. 2011; Rahman et al. 2017; Riojas-Rodríguez 
et al. 2010; Wasserman et al. 2006; Wright et al. 2006), behavioral 
problems (Bouchard et al. 2007; Khan et al. 2012; Menezes-Filho 
et al. 2014; Oulhote et al. 2014a; Rahman et al. 2017), and poor 
memory outcomes (Carvalho et al. 2014; He et al. 1994; Hernández- 
Bonilla et al. 2011; Lucchini et al. 2012a; Oulhote et al. 2014a) in 
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school-age children, adolescents, or in both. Findings from studies in 
infants have not been as consistent as those conducted in older chil-
dren. For example, prenatal Mn exposure has been associated with 
impaired mental, psychomotor, and/or language skills at 1 and 2 y of 
age (Claus Henn et al. 2017; Lin et al. 2013; Yu et al. 2016); and with 
poorer behavior (Ericson et al. 2007) and nonverbal memory at 3 y 
of age (Takser et al. 2003). Some studies have also reported inverted 
U-shaped associations of prenatal or early postnatal Mn exposure 
with BSID-II mental and/or psychomotor developmental scores at 6 
mo (Chung et al. 2015) and at 1 y (Claus Henn et al. 2010), and with 
Bayley Scales of Infant Development, 3rd edition (BSID-III) fine 
motor scores at 2–3 y of age (Rodrigues et al. 2016). 

The Infants’ Environmental Health Study (Infantes y Salud 
Ambiental, ISA) is a community-based birth cohort study exam-
ining the health effects of pesticides and Mn in pregnant women 
and their children living near banana plantations with extensive 
aerial spraying of Mn-containing fungicides (Bravo Durán et al. 
2013) in Matina County, Costa Rica. Previous reports on the ISA 
cohort have shown elevated urinary ETU concentrations among 
women who lived close to banana plantations, who washed agri-
cultural work clothes, and who worked in agriculture during 
pregnancy (van Wendel de Joode et al. 2014). Higher hair Mn 
concentrations were observed in women who lived close to plan-
tations, who worked in agriculture before pregnancy, or who had 
elevated Mn concentrations in drinking water, whereas higher 
blood Mn concentrations were observed in women who lived in 
crowded houses and in houses made of permeable and difficult- 
to-clean materials (Mora et al. 2014). Higher drinking-water Mn 
concentrations in the ISA study were found in houses located 
close to banana plantations (van Wendel de Joode et al. 2016a). 

In the present study, we examined the association of prenatal 
mancozeb exposure and excess Mn, indicated by urinary ETU 
and hair and blood Mn concentrations measured in maternal sam-
ples collected during pregnancy, with neurodevelopmental out-
comes in 1-y-old infants from the ISA study. 

Methods 
Study Population 
Detailed methods for the ISA study have been described elsewhere 
(Mora et al. 2014; van Wendel de Joode et al. 2014). Briefly, 
between March 2010 and June 2011, we recruited pregnant women 
through meetings in local schools, community groups, advertise-
ments, and friends’ referrals. Eligible women were ≥15 y old, 
<33 wk of gestation, and living ≤5 km from a banana plantation 
in Matina County. A total of 451 women were enrolled in the ISA 
study. For the present study, we included 355 (79%) children who 
completed the administration of one or more neurodevelopmental 
scales at 1 y of age and whose mothers provided at least one urine, 
hair, or blood sample during pregnancy. Mother–child pairs 
included in these analyses (n = 355) did not differ significantly 
from the initial cohort (n = 451) on their attributes, including 
maternal education, parity, household income, and prenatal spe-
cific gravity–corrected urinary ETU, hair Mn, and blood Mn con-
centrations (Mora et al. 2014; van Wendel de Joode et al. 2014). 

Written informed consent was obtained from all women 
before participation. Additional informed consent was obtained 
from parents or legal guardians of participants <18 y of age. The 
human subjects committee of the Universidad Nacional in Costa 
Rica (CECUNA) approved all study materials and procedures. 

Maternal Interviews 
Women were interviewed at their homes one to three times during 
pregnancy depending on their gestation age at enrollment (median 

at the first, second, and third visit = 19, 30, and 33 wk gestation, 
respectively), after delivery (median = 7 wk postpartum), and when 
children were 1 y old (median = 1:1 year). Sociodemographic and 
occupational information, including maternal age, education, parity, 
and household income, was collected at the baseline interview. Data 
on birth outcomes were abstracted from prenatal and delivery medi-
cal records completed by hospital/clinic personnel and were pro-
vided to the study participants. 

At the 1-y visit, mothers and their children were interviewed 
and/or assessed at a house that was rented for the ISA study (80%) 
or at another community facility (e.g., church, community center, 
school or day care facility; 20%). During this study visit, mothers 
were administered the Infant-Toddler Home Observation for 
Measurement of the Environment (HOME) inventory short form 
(Caldwell and Bradley 1984), the U.S. Department of Agriculture 
Food Security Scale (six-item short form) (Bickel et al. 2000), and 
the Center for Epidemiologic Studies Depression Scale (CES-D) 
(Radloff 1977). The questionnaire for the social-emotional scale of 
the Bayley Scales of Infant and Toddler Development, 3rd edition 
(BSID-III), Spanish version (Bayley 2006), was also completed by 
the mothers at the 1-y visit. 

Urinary ETU Measurements 
Maternal urine samples were collected one to three times during 
pregnancy (at the same time as the pregnancy interviews). 
Specimens were aliquoted and were stored at −20�C until their ship-
ment to Lund University, Sweden. Samples were then analyzed for 
ETU using a two-dimensional liquid chromatography mass spec-
trometer (LC-MS/MS; UFLCRX; Shimadzu Corporation) with a 
triple quadrupole linear ion trap (QTRAP 5500; AB Sciex) (Ekman 
et al. 2013). Urinary specific gravity (kg=L) was determined using a 
hand refractometer, and ETU concentrations were normalized for 
dilution using the formula ETUSG = ETU × ½ð1:017–1Þ=ðSG − 1Þ�, 
where ETUSG is the specific gravity–corrected ETU concentration 
(lg=L), ETU is the observed ETU concentration (lg=L), SG is the 
specific gravity of the urine sample, and 1:017 kg=L is the average 
specific gravity for our study population. All processed urine sam-
ples were analyzed in duplicate with a coefficient of variance (CV) 
of 10%. Details of urine collection, analysis, and quality control pro-
cedures are described elsewhere (van Wendel de Joode et al. 2014). 
All measured urinary ETU concentrations were above the analytical 
limit of detection (LOD = 0:08 lg=L). 

Hair Mn measurements. Hair samples ( ∼ 20–30 strands) 
were collected from the occipital region, within 2 mm from the 
scalp, at one or two pregnancy visits (conducted at the same time 
as the pregnancy interviews and the urine sample collection). 
Samples were stored at 20–25°C (room temperature) and were 
shipped to the Federal University of Bahia, Brazil. The one- 
centimeter closest to the scalp from each hair sample was cleaned as 
described elsewhere (Menezes-Filho et al. 2009) and was analyzed 
for Mn using electrothermal atomic spectroscopy with Zeeman 
background correction (GTA-120; Varian, Inc.). Processed hair 
samples and reference materials were analyzed in duplicate and had 
CVs that ranged between 1.5 and 7.3%. Only two hair samples had 
Mn concentrations below the analytical LOD (0:1 lg=L); their val-
ues were set at LOD=

p
2. 

Blood Mn measurements. Venous blood samples were col-
lected at one or two pregnancy visits (at the same time as preg-
nancy interviews and urine and hair sample collection) and were 
immediately frozen at −20�C. Samples were shipped to the 
University of California, Santa Cruz, where they were analyzed 
for Mn using high-resolution inductively coupled plasma mass 
spectrometry (Finnigan XR ICP-MS) (Smith et al. 2007). The 
CV of the blood Mn measurements, based on triplicate samples 
analyzed with each analytical batch, was 3.8%. Blood sample 
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collection, analysis, and quality control procedures have been 
described elsewhere (Mora et al. 2014). All blood Mn concentra-
tions were above the analytical LOD (0:003 lg=L). 

In addition, lead was measured in all maternal blood samples 
collected during pregnancy (in the same specimens as those used 
for Mn quantification) using high-resolution inductively coupled 
plasma mass spectrometry (Gwiazda et al. 2005; Lucchini et al. 
2012b). All blood lead concentrations were above the analytical 
LOD (0:0016 lg=L). 

Neurodevelopmental Outcomes 
We assessed child neurodevelopment at the 1-y study visit using 
a Spanish-translated version of the BSID-III (Bayley 2006). The 
English version was translated to Spanish by child developmental 
psychologists (L.S. and her team) at the National Institute of 
Perinatology in Mexico and was revised by Costa Rican research-
ers to ensure that the vocabulary was appropriate for our study 
population. Four domains were evaluated: cognition, motor func-
tion (composed of the fine and gross motor subtests), language 
(receptive and expressive language subtests), and social-emotional 
development. The first three domains were tested through direct 
child assessment, and the fourth domain was assessed using a mater-
nal questionnaire. A single psychometrician, who was trained and 
supervised by a pediatric neuropsychologist, conducted all of the 
assessments. Quality assurance measures included extensive pilot 
testing and review of videotaped assessments. Standardized com-
posite scores [derived from the sum of age-corrected subtest scaled 
scores (language and motor domains) or equivalents to scaled scores 
(cognitive and social-emotional domains); mean ± SD = 100 ± 15, 
range = 40–160] for the four domains were calculated using 
norms based on a sample representative of the U.S. population 
for infants 1 mo through 42 mo of age (Bayley 2006). BSID-III 
z-scores (mean ± SD = 0 ± 1) were also calculated by standardiz-
ing raw scores for each subtest (i.e., cognitive, fine motor, gross 
motor, receptive language, expressive language, and social- 
emotional) within our study population. 

Statistical Analyses 
Distributional plots were generated and descriptive statistics were 
calculated for all variables. Bivariate associations between bio-
markers of exposure, outcomes, and covariates were estimated 
using t-tests for continuous variables and v2 tests for categorical 
variables. Correlations between specific gravity–corrected urinary 
ETU, hair Mn, and blood Mn concentrations were estimated using 
Spearman’s correlation coefficients (rs). To assess the within- and 
between-woman variability and reproducibility of urinary ETU, 
hair Mn, and blood Mn concentrations, we calculated intraclass 
correlation coefficients (ICCs) using mixed-effects models (McGraw 
and Wong 1996). 

We averaged specific gravity–corrected urinary ETU, hair Mn, 
and blood Mn concentrations across the repeated samples collected 
for each woman throughout pregnancy. We then examined associ-
ations of averaged prenatal urinary ETU, hair Mn, and blood Mn 
concentrations with BSID-III standardized composite scores using 
multivariable linear regression models. Because biomarkers were 
only weakly correlated [rs ranged between −0:10 and 0.21; strong-
est correlation for urinary ETU and hair Mn], we simultaneously 
included urinary ETU, blood Mn, and hair Mn concentrations para-
meterized as continuous variables in the models. Specific gravity– 
corrected urinary ETU and hair Mn concentrations were trans-
formed to the log10 scale to normalize the residuals and to reduce 
the influence of outliers. 

We identified potential confounders and known predictors of 
child neurodevelopment [i.e., maternal education, parity, gestational 

age at birth, and child age and HOME (raw) scores at the 1-y visit] 
using directed acyclic graphs and included them a priori in our 
regression models. Although BSID-III composite scores were cor-
rected for prematurity (≤36 weeks gestation) and child’s age at 
assessment during the scoring process, we decided to adjust our 
models for both variables because composite scores were standar-
dized using U.S. norms given that no Latin American norms have 
been published to date. We assessed other potential confounders 
[i.e., maternal age, breastfeeding duration, household income, 
maternal depression (CES-D scores), food security status at the 1-y 
study visit, and location of neurodevelopmental assessment] by add-
ing them, one at a time, to the final models (models with a priori 
covariates). Additional covariates (i.e., location of assessment) were 
included in the final model if they materially changed the magnitude 
of one or more exposure coefficients (>10%). Missing values 
(<10%) for covariates were imputed by randomly selecting a value 
from the subset of observations with known values of the covariate 
(Lubin et al. 2004). 

We evaluated effect modification of the exposure–outcome 
associations by child sex using cross-product terms and stratify-
ing by sex. We also assessed two-way interaction terms between 
the three biomarkers (urinary ETU, blood Mn, and hair Mn con-
centrations) to determine if the effect estimates of a single bio-
marker differed by varying concentrations of another biomarker. 
Interactions were considered significant if pINT < 0:15. 

We conducted several sensitivity analyses to assess the robust-
ness of our results. First, we fitted covariate-adjusted generalized 
additive models with penalized spline smooth terms for continuous 
exposures (constrained to a maximum of 3 knots), and we visually 
assessed plotted splines for evidence of nonlinear exposure– 
outcome associations. Second, we ran our linear regression models 
a) adjusting for covariates with missing values that were imputed 
using simple imputation [either assigning the category with the 
largest number of observations for categorical variables (i.e., parity 
and location of assessment) or the mean of the distribution for con-
tinuous variables (i.e., gestational age at birth and child age at the 
time of assessment)] and b) using complete cases only and com-
pared results with those using the randomly imputed covariates. 
Third, we fitted multivariate linear regression models using subt-
ests’ BSID-III z-scores instead of standardized composite scores, 
given that reliance on U.S. norm-based standardized composite 
scores may result in misclassification of the neurodevelopmental 
scores of Costa Rican children (Cromwell et al. 2014). Fourth, to 
explore whether our findings were sensitive to differences in the 
developmental stages of the central nervous system (Donders and 
Hunter 2010; Semrud-Clikeman and Ellison 2009) or to timing of 
the exposure measurements (Mora et al. 2014), we reran our analy-
ses using specific gravity–corrected urinary ETU, blood Mn, and 
hair Mn concentrations for the first (<20 weeks gestation) and sec-
ond (≥20 weeks) halves of pregnancy. Fifth, we examined the con-
founding effect of averaged prenatal blood lead concentrations by 
adding this variable to the final models. All statistical analyses 
were performed using Stata (version 14.2; StataCorp LLC) and R 
(version 3.1.2; R Development Core Team). 

Results 
ISA mothers were relatively young at the time of enrollment 
(mean age ± SD = 22:4 ± 6:6 y; 17% were ≤18 y old) and predom-
inantly Costa Rican–born (84%), married or cohabitating with their 
partner (74%), and multiparous (65%; Table 1). Approximately 
half had completed primary school (51%). Only 9% of mothers 
worked in agriculture during pregnancy (8% of all mothers 
included in these analyses worked in banana plantations during 
pregnancy), whereas 24% did at the 1-y study visit (22% worked 
in banana plantations). Approximately 65% of the families lived 
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below the Costa Rican poverty line, and 25% of the mothers were 
“at risk” for depression at the 1-y study visit (Table 1). Most chil-
dren were born at term (94%) and had a birth weight >2,500 g 
(97%). The median age of the children at the time of the neurodeve-
lopmental assessment was 1.1 y (range = 0:9–1:6). Covariate data 
were complete for the majority of the participants, with household 
income at the 1-y visit having the largest number of missing values 
before imputation (n = 36, 10%; Table 1). 

Median (25th–75th percentiles) specific gravity–corrected uri-
nary ETU, hair Mn, and blood Mn concentrations in maternal 

samples collected during pregnancy were 3.3 (2.4–4.9) lg=L, 1.7 
(0.9–4.1) lg=g, and 24.0 (20.3–28.0) lg=L, respectively (Table 2). 
Urinary ETU, hair Mn, and blood Mn concentrations were similar 
for boys and girls (data not shown). Averaged urinary ETU 
concentrations were weakly correlated with hair Mn (rs = 0:21, 
p < 0:01) and were not correlated with averaged blood Mn concen-
trations (rs = −0:10, p = 0:06); averaged blood Mn and hair Mn 
concentrations were not correlated (rs = −0:06, p = 0:29). Urinary 
ETU and blood Mn concentrations varied more within than between 
women (ICC = 0:17 and 0.43, respectively), whereas hair Mn con-
centrations varied more between women (ICC = 0:59; Table 2). 

Mean ( ± SD) BSID-III cognitive, language, motor, and social- 
emotional standardized composite scores were 98:2 ± 9:5, 90:1 ± 
7:1, 97:3 ± 8:9, and 90:3 ± 11:9 points, respectively (Table 2). 
Among boys, we observed lower language (mean ± SD = 88:6 ± 
6:8 points) and social-emotional (88:8 ± 11:6 points) standardized 
composite scores than among girls (91:7 ± 7:1 and 91:7 ± 12:2 
points, respectively; p < 0:05; see Table S1). Boys also had lower 
fine motor, receptive language, and expressive language z-scores 
than girls (p < 0:01), but social-emotional z-scores were similar for 
boys and girls (see Table S1). 

Although most associations of averaged prenatal urinary ETU, 
hair Mn, and blood Mn concentrations with BSID-III standardized 
composite scores among all children hovered around the null, we 
observed consistently lower social-emotional composite scores at 
higher hair Mn concentrations [b per 10-fold increase = −2:3 points 
(95% confidence interval (CI): −5:0, 0.4)] after simultaneously 
adjusting for urinary ETU and blood Mn concentrations (Table 3). 
When we stratified by child sex, we found that higher averaged pre-
natal hair Mn concentrations were associated with lower social- 
emotional scores among boys [b per 10-fold increase = −4:6 points 
(95% CI: −8:5, −0:8)] but not among girls [b = −0:2 points (95% 
CI: −4:2, 3.9); pINT = 0:17]. Additionally, higher averaged pre-
natal hair Mn concentrations were associated with lower cogni-
tive scores among girls [b = −3:0 points (95% CI: −6:1, 0.1)] but 
not among boys [b = 2:5 points (95% CI: −0:4, 5.4); pINT = 0:01]. 
We also observed that higher averaged specific gravity–corrected 
urinary ETU concentrations were marginally associated with lower 
social-emotional composite scores among girls [b per 10-fold 
increase = −7:4 points (95% CI: −15:2, 0.4)] but not among boys 
[b = 0:0 points (95% CI: −6:9, 7.0); pINT = 0:11]. We observed 
null associations for blood Mn, language, and motor outcomes 
(Table 3) and did not find evidence of interaction between bio-
markers (see Table S2). 

When we fitted our covariate-adjusted generalized additive 
models with penalized spline smooth terms for continuous expo-
sures, we observed that most exposure–outcome associations were 
linear (see Figure S1). We found a few nonlinear penalized spline 
model estimates (i.e., estimated degrees of freedom >1), but these 
were generally consistent with linear regression model effect esti-
mates. For example, the overall association between prenatal hair 
Mn concentrations and lower social-emotional scores among boys 
was statistically significant in our generalized additive models 
(p = 0:02), but this association was inverse over most of the expo-
sure range and was only null for exposures above ∼ 10 lg=g (see 
Figure S1B). 

When we adjusted our regression models for covariates imputed 
using simple imputation and using complete cases only (see Table 
S3), we observed similar results to those from the analyses that 
included randomly imputed data. When we fitted separate regression 
models for urinary ETU, blood Mn, and hair Mn concentrations (see 
Table S4), we found similar exposure–outcome associations to those 
from the main models (Table 3). When we ran our models for BSID- 
III subtest z-scores (standardized within our study population) 
for boys and girls combined (see Table S5), we observed similar 

Table 1. Characteristics of study population, Infants’ Environmental Health 
(Infantes y Salud Ambiental, ISA) study (n = 355). 
Characteristics n (%) n (%) Imputeda   

Maternal/household   
Age (y)b   

<18 60 (16.9) 60 (16.9) 
18–24 165 (46.5) 165 (46.5) 
25–29 64 (18.0) 64 (18.0) 
30–34 36 (10.1) 36 (10.1) 
≥35 30 (8.5) 30 (8.5) 

Education (years completed)c   

≤6th grade 180 (50.7) 180 (50.7) 
7th–11th grade 165 (46.5) 165 (46.5) 
Completed high school 10 (2.8) 10 (2.8) 

Parity   
0 121 (35.1) 123 (34.7) 
≥1 224 (64.9) 232 (65.3) 
Missing 10 0 

Smoking during pregnancy   
No 336 (94.7) 336 (94.7) 
Yes 19 (5.3) 19 (5.3) 

Agricultural work at 1-y visit   
No 270 (76.1) 270 (76.1) 
Yes 85 (23.9) 85 (23.9) 

Depression at 1-y visit (CES-D score)   
No (<24) 257 (73.6) 262 (73.8) 
Yes (≥24) 92 (26.4) 93 (26.2) 
Missing 6 0 

Household income at 1-y visit   
Above poverty line 107 (33.6) 120 (33.8) 
Below poverty line and above extreme  

poverty line 
144 (45.1) 156 (43.9) 

Below extreme poverty line 68 (21.3) 79 (22.3) 
Missing 36 0 

Food security status at 1-y visit   
High or marginal 220 (62.0) 220 (62.0) 
Low 101 (28.4) 101 (28.4) 
Very low 34 (9.6) 34 (9.6) 

Location of neurodevelopmental  
assessment   

Field office 285 (80.5) 285 (80.3) 
Other 69 (19.5) 70 (19.7) 
Missing 1 0 

Child   
Child's sex   

Boy 178 (50.1) 178 (50.1) 
Girl 177 (49.9) 177 (49.9) 

Low birth weight (<2,500 g)   
No 340 (97.1) 345 (97.2) 
Yes 10 (2.9) 10 (2.8) 
Missing 5 0 

Preterm birth (<37 wk)   
No 326 (93.7) 333 (93.8) 
Yes 22 (6.3) 22 (6.2) 
Missing 7 0 

Note: CES-D, Center for Epidemiologic Studies Depression Scale; n, number of 
participants. 
aNumber of observations for each characteristic after imputing missing values by ran-
domly selecting from observed data for each covariate. Imputed data were used in ana-
lytic models. 
bModeled as a continuous variable in regression models. 
cModeled as a dichotomous variable (≤6th grade and >6th grade) in regression models.  
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associations to those observed using U.S. norm–based standardized 
composite scores. Nevertheless, we found that among girls, the 
inverse association between hair Mn concentrations and cognitive 
scores was somewhat strengthened [b per 10-fold increase = −0:40 
(95% CI: −0:70, −0:09)], whereas the association between urinary 
ETU concentrations and social-emotional scores was attenuated 
[b per 10-fold increase = − 0:28 (95% CI: −0:78, 0.22)] compared 
with the associations observed in the main models. Among boys, 
higher averaged prenatal hair Mn concentrations remained associated 
with lower social-emotional scores [b = −0:31 (95% CI: −0:57, 
−0:06)]. 

When we included averaged prenatal urinary ETU, hair Mn, 
and blood Mn concentrations for the first or second halves of preg-
nancy in the adjusted models instead of the averaged concentra-
tions for the entire pregnancy, we observed that the associations of 

hair Mn concentrations with lower social-emotional scores in boys 
and lower cognitive scores in girls were stronger during the second 
half of pregnancy [b per 10-fold increase = −3:9 (95% CI: −7:6, 
−0:2) and −2:3 (95% CI: −5:7, 1.1), respectively; see Table S6 
and Figure S2] than during the first half [b = − 2:5 (95% CI: −8:1, 
3.1) and −0:7 (95% CI: −4:4, 3.1), respectively; see Table S7 and 
Figure S2]. In contrast, we found that the association between uri-
nary ETU and lower social-emotional development scores in girls, 
although imprecise, was somewhat stronger during the first half of 
pregnancy [b per 10-fold increase = −8:6 (95% CI: −20:5, 3.3); 
see Table S7 and Figure S2] than during the second half [b = −2:7 
(95% CI: −10:9, 5.6); see Table S6 and Figure S2]. Lastly, the 
addition of prenatal blood lead concentration to the models did 
not change the point estimates observed in the main analyses 
(see Table S8), most likely because of the low concentrations 

Table 2. Distribution of prenatal biomarkers of exposure and child neurodevelopmental outcomes in the study population, Infants’ Environmental Health 
(Infantes y Salud Ambiental, ISA) study (k = 355 mother–child pairs). 

Exposures and outcomes n k Mean ± SD Min 
Percentile 

Max r2
btw r2

within ICC 25th 50th 75th   
Prenatal biomarkers of exposurea            

Urinary ETUSG (lg=L)b,c 764 355 4:4 ± 7:1 0.8 2.4 3.3 4.9 127.4 0.02 0.08 0.17 
Hair Mn (lg=g)c,d 661 355 3:7 ± 5:4 0.1 0.9 1.7 4.1 53.3 0.16 0.11 0.59 
Blood Mn (lg=L)e 571 349 24:4 ± 6:2 9.1 20.3 24.0 28.0 50.6 19.92 26.45 0.43             

Neurodevelopmental outcomesf            

BSID-III composite scores            
Cognitive — 355 98:2 ± 9:5 70.0 90.0 100.0 105.0 130.0 — — — 
Language — 346 90:1 ± 7:1 68.0 86.0 90.0 94.0 109.0 — — — 
Motor — 338 97:3 ± 8:9 76.0 91.0 97.0 103.0 124.0 — — — 
Social-emotional — 352 90:3 ± 11:9 60.0 80.0 90.0 100.0 130.0 — — — 

Note: —, no information was collected at that particular examination point. BSID-III, Bayley Scales of Infant and Toddler Development, 3rd edition; ETUSG, specific gravity–adjusted 
ethylenethiourea; ICC, intraclass correlation coefficient; k, number of women; Max, maximum; Min, minimum; Mn, manganese; n, number of samples; SD, standard deviation. 
aDescriptive analyses were conducted with averaged concentrations across pregnancy samples, whereas ICC analyses were conducted with the nonaveraged (individual) concentra-
tions. In the women for whom only one Mn or ETU measurement was available, the single measurement was used in lieu of the average. 
bETU was measured in 764 urine samples collected from 355 study participants: 93 women provided three urine samples during pregnancy, 223 provided two samples, and 39 pro-
vided one sample. 
cBetween- and within-woman variances and ICCs were calculated and reported for log10-transformed specific gravity–adjusted urinary ETU and hair Mn concentrations. 
dMn was measured in 661 hair samples collected from 355 study participants: 306 women provided two hair samples, and 49 provided only one. 
eWhole-blood Mn was measured in 571 blood samples collected from 349 women: A total of 222 women provided two samples during pregnancy, and 127 provided only one. 
fNot all 355 infants were administered all four BSID scales. For example, only 346 infants were administered the language scale, whereas only 338 were administered the motor scale.  

Table 3. Adjusted associations of prenatal logETUSG (lg=L), logMnH (lg=g), and MnB (lg=L) concentrations with BSID-III standardized composite scores at 
1 year of age for all children and stratified by child sex (models simultaneously adjusted for all three biomarkers), Infants’ Environmental Health (Infantes y 
Salud Ambiental, ISA) study. 

Neurodevelopmental outcomesa 
All children Boys Girls 

n b (95% CI) n b (95% CI) n b (95% CI) pINT   

Cognitive              
LogETUSG 349   −1:1 (−4:9, 2.8) 174   −1:8 (−7:1, 3.4) 175   −1:4 (−7:3, 4.5) 0.60 
LogMnH 349   −0:2 (−2:3, 1.8) 174   2.5 (−0:4, 5.4) 175   −3:0 (−6:1, 0.1) 0.01 
MnB 349   0.1 (−0:1, 0.2) 174   0.1 (−0:1, 0.3) 175   0.0 (−0:2, 0.2) 0.33 

Language              
LogETUSG 340   −0:6 (−3:6, 2.5) 169   −1:3 (−5:4, 2.9) 171   0.1 (−4:5, 4.6) 0.79 
LogMnH 340   0.0 (−1:7, 1.6) 169   0.8 (−1:5, 3.1) 171   −0:6 (−2:9, 1.8) 0.46 
MnB 340   0.0 (−0:1, 0.1) 169   0.0 (−0:2, 0.1) 171   0.1 (−0:1, 0.3) 0.26 

Motor              
LogETUSG 332   −0:3 (−4:3, 3.7) 162   1.2 (−4:3, 6.6) 170   −2:4 (−8:6, 3.8) 0.34 
LogMnH 332   0.6 (−1:6, 2.7) 162   0.3 (−2:8, 3.4) 170   1.4 (−1:8, 4.6) 0.99 
MnB 332   0.0 (−0:1, 0.2) 162   0.1 (−0:1, 0.3) 170   0.0 (−0:3, 0.2) 0.52 

Social-emotional              
LogETUSG 346   − 3:9 ( − 9:0, 1.2) 173   0.0 ( − 6:9, 7.0) 173   − 7:4 ( − 15:2, 0.4) 0.11 
LogMnH 346   − 2:3 ( − 5:0, 0.4) 173   − 4:6 ( − 8:5, − 0:8) 173   − 0:2 ( − 4:2, 3.9) 0.17 
MnB 346   0.1 ( − 0:1, 0.3) 173   0.1 ( − 0:2, 0.3) 173   0.1 ( − 0:2, 0.4) 0.89 

Note: Models were adjusted for maternal education, parity, gestational age at birth, and child age, Home Observation for Measurement of the Environment (HOME) score, location of 
assessment at 1-year visit, and all three biomarkers of exposure. BSID-III, Bayley Scales of Infant and Toddler Development, 3rd edition; logETUSG, log10-transformed and specific 
gravity–adjusted urinary ethylenethiourea; logMnH, log10-transformed hair manganese; MnB, blood manganese; n, number of samples. 
aSample sizes vary between neurodevelopmental domains and with respect to Table 2 because not all infants completed all four BSID-III scales, and not all of their mothers contrib-
uted urine, hair, and blood samples during pregnancy. For example, 355 infants completed the administration of the BSID-III cognitive scale, and all of them had a maternal urine sam-
ple collected during pregnancy (see Table 2), but only 349 of these infants had maternal hair and blood samples.  
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detected in our study population (median = 6:5 lg=L; 25th–75th 
percentiles = 5:0–8:6). 

Discussion 
In a prospective cohort of mother–child pairs living near banana 
plantations in Costa Rica, we observed that higher prenatal Mn, 
as indicated by hair Mn concentrations measured in women dur-
ing pregnancy, was associated with lower cognitive scores among 
girls and lower social-emotional scores among boys at 1 y of age. 
We also found that higher prenatal urinary ETU concentrations 
were associated with lower social-emotional scores among girls. 
We observed no associations for prenatal blood Mn concentra-
tions, language, or motor function. 

Our findings are consistent with studies on early-life excess 
Mn that have reported inverse associations with cognitive and be-
havioral outcomes in infants (Claus Henn et al. 2017; Ericson 
et al. 2007; Lin et al. 2013). However, unlike some studies that 
have observed biphasic dose–response relationships of prenatal 
and early postnatal Mn exposure with child neurodevelopment 
(Chung et al. 2015; Claus Henn et al. 2010; Rodrigues et al. 
2016), we found linear exposure–outcome associations. Recently, 
a birth cohort study of 232 Korean mother–child pairs measured 
Mn concentrations in maternal blood samples collected at deliv-
ery and reported inverse U-shaped associations with both mental 
and psychomotor development indexes in 6-mo-old children 
(Chung et al. 2015). A cross-sectional study of 270 12-mo-old 
Mexican children reported an inverted U-shaped association 
between blood Mn concentrations and mental development 
(Claus Henn et al. 2010). Furthermore, a study in 524 2–3 y old 
Bangladeshi children reported an inverse U-shaped relationship 
between drinking-water Mn concentrations and concurrent fine 
motor scores (Rodrigues et al. 2016). Discrepancies between the 
findings of these studies and our own may be due to the fact that 
Mn concentrations in our study population could be within the 
range at which Mn acts as a neurotoxicant rather than as a nutri-
ent with a beneficial capacity, thus resulting in impaired neurode-
velopmental outcomes. Blood Mn concentrations in ISA mothers 
were higher than those reported in Korean (Chung et al. 2015) 
and French (Takser et al. 2003) mothers, but similar to those 
observed in mothers living near a Superfund site in Oklahoma 
(Claus Henn et al. 2017); hair Mn concentrations in ISA mothers 
were higher than those reported in French mothers (Takser et al. 
2003). Inconsistent findings between previous studies and ours, 
including null associations of prenatal excess Mn with motor 
function and language, may also be due to differences in sources 
and pathways of excess Mn [e.g., airborne in Mexico (Claus 
Henn et al. 2010) vs. mainly waterborne in Costa Rica] and in the 
timing at which neurodevelopmental assessments were com-
pleted [e.g., language and motor outcomes were mostly assessed 
at 2 and/or 3 y of age in other studies (Lin et al. 2013; Takser 
et al. 2003; Yu et al. 2016) vs. at 1 y in the ISA study]. 

In our analyses, we observed sex- and domain-specific differ-
ences in the associations of urinary ETU, hair Mn, and blood Mn 
concentrations with infant neurodevelopment. These differences 
in exposure–outcome associations, as well as the lack of correla-
tion between biomarkers, could be explained by several factors: 
a) differences in exposure sources [excess Mn is likely to origi-
nate from both mancozeb spraying and naturally occurring Mn in 
groundwater (Mora et al. 2014; van Wendel de Joode et al. 
2016a), whereas urinary ETU only originates from mancozeb/ 
ETU spraying (van Wendel de Joode et al. 2014); ETU is not nat-
urally present in the environment]; b) differences in exposure 
pathways [excess Mn is likely due to ingestion of waterborne Mn 
and inhalation of airborne Mn (Mora et al. 2014; van Wendel de 
Joode et al. 2016a), whereas urinary ETU is thought to reflect 

inhalation exposures (van Wendel de Joode et al. 2014)]; or c) 
differences in exposure windows [hair Mn concentrations meas-
ured in the 1-cm hair sample closest to the scalp reflect exposures 
during the last 30 d (Eastman et al. 2013; Skröder et al. 2017); 
blood Mn and urinary ETU concentrations reflect exposures dur-
ing the last few days (Coles et al. 2012; WHO 1988)]. Domain- 
specific differences between biomarkers could also be present 
because ETU and Mn may have different biological mechanisms 
for their neurotoxic effects and, consequently, could affect neuro-
developmental domains in different ways. Studies have shown 
that the neurotoxicity of mancozeb and/or ETU may be mediated 
by oxidative stress (Domico et al. 2007), interference of the ve-
sicular transport of glutamate (Vaccari et al. 1999), and thyroid 
homeostasis dysfunction (Doerge and Takazawa 1990). In con-
trast, some studies have suggested that Mn neurotoxicity may be 
mediated by dopaminergic dysfunction (Racette et al. 2012) and 
by disruption of thyroid homeostasis (Soldin and Aschner 2007). 
Lastly, it is possible that both Mn-containing fungicides and 
excess Mn could lead to sexually dimorphic neurodevelopmental 
differences in children. For example, human and animal studies 
indicate that there might be biological sex differences in response 
to Mn (Dorman et al. 2004; Madison et al. 2011), such as meta-
bolic variations in the homeostatic mechanisms that regulate Mn 
concentrations in the human body (Oulhote et al. 2014b). In addi-
tion, several pesticides, including EBDCs, are suspected endo-
crine disruptors that may lead to a differential pattern of association 
with neurodevelopment for boys and girls (Kjeldsen et al. 2013; 
Rosenfeld and Trainor 2014). Further toxicological and epidemio-
logical studies are needed to determine how Mn-containing fungi-
cides and excess Mn target different neurodevelopmental domains 
and whether they cause sex-specific effects. 

To date, there is no consensus on which is the best biomarker to 
assess human exposure to Mn (Coetzee et al. 2016). Hair Mn con-
centrations could be affected by external contamination (Eastman 
et al. 2013; Skröder et al. 2017) and by interindividual variability 
resulting from differences in hair characteristics and personal hab-
its (Chojnacka et al. 2006; Kempson and Lombi 2011). Notably, 
concentrations of Mn in blood are homeostatically regulated by the 
hepatic portal system (ATSDR 2012) and increase throughout 
pregnancy (Mora et al. 2014; Spencer 1999; Takser et al. 2004); 
therefore, they may not be the best surrogate for maternal Mn load 
or fetal exposure. Additional research is needed to better under-
stand the connections between environmental sources and internal 
dose of these biomarkers, as well as the reliability of biomarkers of 
maternal exposure to Mn-containing fungicides and excess Mn for 
assessing prenatal exposure to the fetus. 

Our study has several limitations. First, we cannot rule out the 
possibility that selection bias could have arisen from loss to 
follow-up. Second, we recognize that we conducted multiple com-
parisons, which could have led to statistically significant associa-
tions by chance, but we tried to look for patterns in our results 
rather than to highlight isolated findings. Third, we assessed child 
neurodevelopment using a test that has not been standardized in 
Latin American populations; nevertheless, our standardized com-
posite scores were within the expected range (Bayley 2006), and 
we observed similar exposure–outcome associations using U.S. 
norm-based standardized composite and z-scores in our models. 
Fourth, because social-emotional development scores were based 
on maternal report, we cannot exclude the possibility that there 
might have been information bias in the mothers’ responses; how-
ever, we would not expect reporting differences between mothers 
who had high ETU or Mn concentrations during pregnancy and 
those who had low concentrations because mothers were not aware 
of their prenatal concentrations at the time of the 1-y study visit. 
Fifth, it is possible that 1 y of age may be too early to identify long- 
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lasting neurodevelopmental effects of prenatal exposures to envi-
ronmental toxicants; at the present time, further neurodevelopmen-
tal assessments of the ISA study participants are being conducted 
to determine if exposure–outcome associations observed in 
infancy persist until mid- and late childhood. 

This is among the first studies to examine the potential neuro-
developmental impact of exposure to Mn-containing fungicides 
in children living in agricultural communities. It is also one of 
the few prospective studies to assess the association of prenatal 
excess Mn with neurodevelopment, which strengthens the grow-
ing body of literature on this topic. In our analyses, we were able 
to examine and adjust for several important prenatal and postnatal 
factors such as lead exposure, socioeconomic indicators, maternal 
education, and child stimulation. 

Conclusion 
Our present findings indicate that prenatal exposure to mancozeb 
and excess Mn, as measured by urinary ETU and hair Mn concen-
trations during pregnancy, may be associated with poorer cognitive 
abilities in girls and with worse social-emotional development in 
boys and girls at 1 y of age. In view of these results and the precau-
tionary principle, we recommend improving the infrastructure and 
management of water sources to reduce elevated Mn concentra-
tions in drinking water (van Wendel de Joode et al. 2016a) and 
implementing measures to reduce environmental exposure to 
mancozeb/ETU [e.g., increasing the distance between banana plan-
tations and residential areas, washing work clothes at the workplace 
(Mora et al. 2014; van Wendel de Joode et al. 2014; van Wendel de 
Joode et al. 2016a)] in pregnant women and children living near 
banana plantations to prevent further neurodevelopmental effects 
and other adverse health outcomes resulting from these exposures. 
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